Calendário Astronômico – O Céu de Abril/2024

Um mês repleto de encontros planetários visíveis de todo o Brasil, com um eclipse solar visível apenas no Hemisfério Norte e com o promissor cometa 12P/Pons-Brooks chegando ao periélio. Prepare a agenda para não perder nenhum dos espetáculos em cartaz no céu durante o mês de abril!

Calendário Astronômico

As efemérides foram computadas usando as bibliotecas astropy e astroquery em scripts Python e o software Occult v4.

    Data               Evento

    2024-04-01 05h - Lua no ponto mais ao sul (-28.6°)
    2024-04-01 19h - Mercúrio estacionário
    2024-04-02 00h - QUARTO MINGUANTE
    2024-04-03 09h - Plutão 2.1°N da Lua
    2024-04-03 10h - Vênus 0.3°S de Netuno
    2024-04-06 03h - Marte 1.7°N da Lua
    2024-04-06 07h - Saturno 1.0°N da Lua
    2024-04-07 05h - Netuno 0.3°N da Lua
    2024-04-07 13h - Vênus 0.4°S da Lua
    2024-04-07 14h - Lua no perigeu
    2024-04-08 15h - LUA NOVA
    2024-04-08     - Eclipse Solar - Não visível do Brasil.
    2024-04-08 23h - Mercúrio 1.9°N da Lua
    2024-04-10 16h - Júpiter 3.7°S da Lua
    2024-04-10 17h - Marte 0.4°N de Saturno
    2024-04-10 19h - Urano 3.4°S da Lua
    2024-04-11 19h - Mercúrio em conjunção inferior.
    2024-04-13 19h - Lua no ponto mais ao norte (28.6°)
    2024-04-15 11h - Pollux 1.5°N da Lua
    2024-04-15 16h - QUARTO CRESCENTE
    2024-04-18 11h - Regulus 3.3°S da Lua
    2024-04-19 07h - Mercúrio 1.7°N de Vênus
    2024-04-19 23h - Lua no apogeu
    2024-04-20 23h - Júpiter 0.5°S de Urano
    2024-04-21 00h - Cometa 12P/Pons-Brooks no periélio.
    2024-04-23 00h - Spica 1.3°S da Lua
    2024-04-23 20h - LUA CHEIA
    2024-04-24 05h - Mercúrio estacionário
    2024-04-26 17h - Antares 0.3°S da Lua
    2024-04-28 11h - Lua no ponto mais ao sul (-28.5°)
    2024-04-29 01h - Marte 0.1°N de Netuno
    2024-04-30 15h - Plutão 2.0°N da Lua


ABRIL NA HISTÓRIA

--------------------------------------------------
7 - Missões Espaciais: Mars Odyssey foi lançada em 7 de abril de 2001.

10 - Descobertas/Eventos: Em 2019, a primeira imagem de um buraco negro foi publicada pelo Event Horizon Telescope.

10 - Missões Espaciais: BepiColombo realizou um sobrevoo da Terra em 10 de abril de 2020 aproveitando a gravidade terrestre para ganhar energia em sua jornada até Mercúrio, com entrada em órbita programada para 2025.

11 - Missões Espaciais: Apollo 13 foi lançada em 11 de abril de 1970.

12 - Astrônomos e Físicos: Charles Messier morre em Paris, em 12 de abril de 1730, aos 86 anos. Seu catálogo de objetos nebulosos é uma referência para astrônomos amadores.

12 - Missões Espaciais: STS-1 Columbia, o primeiro voo do Programa de Ônibus Espaciais da NASA, lançado em 12 de abril de 1981.
 
12 - Missões Espaciais: Yuri Gagarin - Vostok 1, em 12 de abril de 1961, tornou Yuri Gagarin o primeiro ser humano a viajar para o espaço.

14 - Astrônomos e Físicos: Christiaan Huygens nasceu em 14 de abril de 1629.

17 - Descobertas/Eventos: Em 2014, astrônomos anunciaram a descoberta do exoplaneta Kepler-186f. Primeiro planeta de dimensões comparadas à Terra encontrado na zona habitável de uma estrela.

23 - Astrônomos e Físicos: Max Planck nasceu em 23 de abril de 1858.

24 - Missões Espaciais: Telescópio Espacial Hubble foi lançado em 24 de abril de 1990.

25 - Astrônomos e Físicos: Guglielmo Marconi nasceu em 25 de abril de 1874.
Apesar do padre brasileiro Landell de Moura ter realizado com sucesso experimentos com telecomunicações via ondas de rádio nos primeiro anos da década de 1890, Marconi é considerado mundialmente como o pioneiro na radiotelegrafia desenvolvendo equipamentos que dariam origem a comunicação por rádio moderna.

O Cometa Pons-Brooks sobe ao palco!!

Órbita do cometa 12P/Pons-Brooks (em branco). Visualização gerada no visualizador de órbitas do sistema JPL-Horizons.

A órbita da Terra e a dos demais planetas está contida aproximadamente no mesmo plano, a eclíptica. Assim, é sempre nas proximidades dessa faixa do céu definida pela órbita terrestre que encontraremos todos os planetas e muitos dos outros objetos do Sistema Solar. É comum no entanto encontrarmos cometas com órbitas muito inclinadas em relação ao plano da eclíptica. É o caso do cometa 12P/Pons-Brooks que tem sua órbita com inclinação de 74º em relação ao plano da órbita terrestre e quase que inteiramente ao norte da eclíptica. As consequências dessa geometria e do fato de vivermos em um planeta esférico é que nos meses que antecedem o periélio, a máxima aproximação com o Sol, do 12P/Pons-Brooks, a observação é bem desfavorável para observadores no hemisfério sul.

A notícia boa é que ao atingir o periélio o 12P já estará numa posição menos desfavorável para observação abaixo do equador. Após o periélio o cometa segue em direção ao hemisfério sul celeste, permitindo que sejamos os últimos a observá-lo enquanto se afasta do Sol.

E vamos poder vê-lo a olho nu?

Certamente vai ser possível vê-lo com binóculos. A projeção de magnitude 4 ao redor do periélio coloca seu brilho bem dentro dos limites do que podemos observar a olho nu, mas cometas são objetos de brilho difuso e o 12P aparecerá próximo ao horizonte logo após o pôr do Sol nas semanas que antecedem e sucedem o periélio. O céu ainda não completamente escuro e a pequena elevação do cometa sobre o horizonte adicionam uma dificuldade extra à observação. É possível sim vê-lo a olho nu, mas busque locais com horizonte desobstruído e acompanhe nossas redes sociais para dicas de observação assim que o cometa estiver mais evidentes em nossas latitudes.

Os dados disponibilizados pelos membros da rede de observação de cometas COBS mostra a evolução do brilho do cometa 12P/Pons-Brooks e projeta magnitude 4 no período próximo ao periélio. [ fonte: https://cobs.si/home/]

Os Planetas.

Aproveite para observar o Júpiter ao anoitecer. Abril é o mês da despedida do Gigante Gasoso do céu noturno. E pelos próximos meses teremos os planetas mais brilhantes visíveis apenas durante a madrugada. Então prepare-se para cair cedo da cama se quiser acompanhar as sempre belas conjunções entre a Lua e os planetas.

Céu de São José dos Campos, às 19h do dia 7 de abril de 2024. O Norte está no topo e o Leste à esquerda. [diagrama: @ceuprofundo, gerado no Stellarium]

No diagrama abaixo vemos a evolução dos planetas e do cometa Pons-Brooks no céu durante o mês de abril. Clique na imagem para ampliar.

Conjunções

Ao amanhecer do dia 6 de abril, a Lua com 8% de sua face visível iluminada vai compor um belo quadro ao lado de Saturno e Marte. Mais baixo no horizonte, Vênus completa a composição. É uma bela oportunidade para emoldurar três planetas e a Lua incluindo a paisagem.

Ao amanhecer do dia 6 de abril, a Lua, com 8% de sua face visível iluminada ao lado de Saturno. [imagem: gráfico gerado no Stellarium. Wandeclayt M.]

Na madrugada de 10 de abril uma oportunidade rara de ver dois planetas através da ócular do telescópio. Se você é capaz de ver a lua inteira na ocular, poderá ver simultaneamente Marte e Saturno no mesmo campo. Na imagem abaixo simulamos no Stellarium a visão com um telescópio de 200 mm de abertura, f/6 com ocular de 26mm.

Marte e Saturno pela ocular do telescópio. Simulação no software Stellarium [ Wandeclayt M./Céu Profundo]

No dia 29 de abril o encontro é entre Marte e Netuno, com os planetas ainda mais próximos no campo da ocular. É uma boa oportunidade de identificar Netuno no céu.

Marte e Netuno no campo da ocular, em 29 de abril. Simulação no software Stellarium. [Wandeclayt M./Céu Profundo]

Júpiter e Urano também se cruzam no dia 20 de abril, mas com os planetas muito próximos do horizonte ao pôr do Sol.

Satélites de Júpiter

Configuração dos satélites galileanos de Júpiter durante o mês de abril. O diâmetro de Júpiter é representado pela faixa central. As curvas representam a posição aparente dos satélites em relação ao disco do planeta. Gráfico gerado em https://pds-rings.seti.org/tools/tracker3_jup.shtml

Não compre! Adote uma estrela!

Assim como o Mickey Mouse da animação de 1928 que acaba de entrar em domínio público, catálogos astronômicos podem ser usados livremente sem que você precise pagar por eles.

Há várias maneiras de se identificar uma mesma estrela no céu. Algumas estrelas possuem nomes próprios, como Sírius, a estrela mais brilhante na constelação do Cão Maior. Ou como Betelgeuse e Rigel em Órion. Ou ainda Antares, a gigante vermelha que marca o coração da constelação do Escorpião.

Muitos desses nomes tem origem na Grécia antiga e trilharam um longo caminho até os nossos dias através de obras como o Almajesto, escrito no séc. II por Claudio Ptolomeu, que resgatava o trabalho de Hiparco (190 a.C – 120 a.C) que elaborou o primeiro catálogo estelar e introduziu o conceito de “grandezas” para quantificar o brilho das estrelas, atribuindo seis grandezas às estrelas então visíveis a olho nu, indo da primeira grandeza para as mais brilhantes até a sexta grandeza para as estrelas no limite da visibilidade. Esta classificação em grandezas foi preservada no sistema moderno de magnitudes de objetos astronômicos.

A ponte entre Claudio Ptolomeu e o Renascimento europeu coube principalmente a astrônomos árabes, que deixaram um rico legado de nomenclatura estelar, seja por nomes cunhados originalmente pelos povos do deserto ou por transcrições de nomes gregos. O Livros das Estrelas Fixas (964 d.C) do astrônomo persa Abd al-Rahman al-Sufi, descreve as 48 constelações listadas por Ptolomeu e inclui tabelas com a localização e magnitude das estrelas e listas com seus nomes árabes. Al Sufi é uma das grandes fontes de nomes estelares que se perpetuaram e foi uma grande influência para a Astronomia europeia.

A constelação de Escorpião representada no Livro das Estrelas Fixas, de Al Sufi.

Nomes latinos como Spica (a Espiga) em Virgem, ou Bellatrix (a Guerreira) em Órion misturam-se a nomes de origem árabe que você certamente conhece: Betelgeuse (que vem de Ibt al Jauzah, A axila do que está no meio) em Órion, Aldebaran ( Al Dabaran, Aquela que segue. No caso, segue as Plêiades) em Touro e Denébola (Al Dhanab al Asad, a cauda do Leão) em Leão.

Mas nem todas as estrelas visíveis possuem nomes próprios. Johann Bayer (1572-1625) publicou em 1603 seu atlas estelar Uranometria (Uranometria Omnium Asterismorum) introduzindo um novo sistema de nomenclatura: a partir da estrela mais brilhante da constelação, atribuem-se em ordem alfabética as letras do alfabeto grego, seguido do genitivo em latim da constelação. Assim, estrela mais brilhante na constelação do Touro (Aldebaran) é a alfa Tauri, a segunda mais brilhante é a beta Tauri e assim sucessivamente. Após a última letra do alfabeto grego (ômega), Bayer utilizou as letras do alfabeto latino.

O Uranometria de Bayer certamente simplificou a maneira como identificamos estrelas, mas ainda assim, é insuficiente quando mergulhamos em direção a estrelas menos luminosas. A sequência necessária ao trabalho de Bayer veio com o catálogo criado por John Flamsteed (1646-1719) que ordenava as estrelas não pelo seu brilho aparente mas por suas coordenadas, listando-as em ordem crescente de ascenção reta em seu Stellarum Inerrantium Catalogus Britannicus (Catálogo Britânico das Estrelas Fixas) incluído no volume 3 do Historiae coelestis Britannicae, publicado postumamente em 1725.

A esta altura, já temos três maneiras de identificar as estrelas mais brilhantes: por seu nome próprio e pelas designações de Bayer e de Flamsteed. Assim, a estrela número 58 na constelação de Órion (58 Orionis) do catálogo de Flamsteed é também a alfa Orionis na designação de Bayer, além de ter seu nome próprio: Betelgeuse.

Região das Constelações de Órion e Touro no Atlas de Flamsteed. Constelações que não se popularizam como “O pequeno telescópio de Herschel” e “A Harpa de George” aparecem representadas nessa edição francesa do Atlas de 1776 [Acervo online da Universiteit Utrecht].

Das 2936 estrelas listadas na versão final do catálogo de Flamsteed, no séc 18, até os catálogos contemporâneos o salto no número de objetos catalogados não foi nada singelo. No séc. 19, o atlas Uranographia (1801) de Johann Elert Bode (1747-1826) incluía novas estrelas do hemisfério sul celeste e representava novas constelações imaginadas por Hevelius e Lacalle, chegando a 17240 objetos. O Uranometria Argentina(1879), de Benjamin Gould, elevava o número de objetos a 32448.

No séc. 20, novos grandes catálogos surgiram, como os populares Henry Draper Catalog (HD), Bright Star Catalog (Harvard Revised Photometry, HR) e Smithsonian Astrophysical Observatory Catalog (SAO), todos usando designações alfanuméricas. Usando esses catálogos, Betelgeuse pode ser chamada de HD39801, HR 2061 ou SAO 113271.

Consultando dados do catálogo Gaia DR1 em uma região do aglomerado globular de estrelas M4, imageado pelo Telescópio Espacial Hubble. Tanto as imagens do Hubble quanto os dados do Gaia são públicos e amplamente utilizados por cientistas profissionais e cidadãos.

Saltando para a atualidade, na era dos mapeamentos realizados por satélites, chegamos catálogos 1 milhão de vezes maiores que o de Bayer. Em sua versão publicada em 2022, o catálogo gerado pelo satélite Gaia, da Agência Espacial Europeia (ESA), lista 1,5 bilhão de fontes com magnitude, posição, paralaxe e movimento próprio.

O valor de um catálogo mora na sua utilidade e na ampla adoção pela comunidade. Ao listar um objeto em uma publicação científica é preciso que aquele objeto seja inequivocamente identificado por qualquer pessoa interessada, cientista profissional ou não, independente de sua nacionalidade ou cultura. E isto é possível graças ao uso de catálogos que são de conhecimento de toda a comunidade de observação e pesquisa em astronomia, incluindo a observação amadora. Se recebemos uma previsão de que a estrela HD39801 será ocultada por um asteroide, prontamente sabemos suas coordenadas e magnitude e podemos identificar que a estrela é a nossa familiar Betelgeuse.

Isso significa que um catálogo particular, sem qualquer uso pela comunidade não tem valor? A resposta curta é sim. Mas há quem consiga lucrar com isso, aproveitando-se da ingenuidade do público menos familiarizado com o tema. Há quem cobre para batizar uma estrela com seu nome, oferecendo vistosos certificados de inclusão num catálogo que será utilizado por um total de zero pessoas. Aparentemente o encontro entre oportunismo e ingenuidade é o motor desse mercado. Falamos com tranquilidade: vender estrelas é golpe.

O fato é que a compra do nome de uma estrela não tem qualquer respaldo da entidade mundial de regulação da nomenclatura astronômica, a União Astronômica Internacional (IAU) e mais ninguém além de você e de quem ganhou o seu dinheiro vai fazer a mínima ideia de que você deu seu nome ao distante astro.

Catálogos oficiais, utilizados pela comunidade astronômica, não comercializam nomes de estrelas ou de outros objetos astronômicos. Fuja desse golpe.

E como a IAU não comercializa nomes de objetos astronômicos, talvez faça mais sentido adotar livre e gratuitamente a estrela de sua preferência e quem sabe até presentear seus entes queridos com sua estrela favorita sem precisar pagar para qualquer empresa charlatã. E se você não possui um telescópio, pode explorar o céu e escolher sua estrela, ou talvez uma nebulosa ou uma galáxia inteira, em um atlas celeste fotográfico como o ESASky. Provavelmente você não vai poder mandar entregar esse presente, mas não temos dúvidas de que dedicar a alguém um belo objeto astronômico que você pacientemente encontrou após explorar uma região do céu é um presente único e tocante. Mas o mais importante é: não compre! Adote!

Referências

Allen, Richard Hinckley. Star Names and Their Meanings (1899). https://archive.org/details/starnamesandthe00allegoog/

Abd al-Rahman al-Sufi. Suwar al-kawākib (O Livro das Estrelas Fixas)(964). https://www.loc.gov/item/2008401028

Bayer, Johann. Uranometria Omnium Asterismorum (1603). https://archive.org/details/uranometria-omnium-asterismorum-continens-schemata/

Flamsteed, John. Atlas céleste de Flamstéed (1776). http://objects.library.uu.nl/reader/resolver.php?obj=000527025&type=2

Flamsteed, John. Historiae coelestis Britannicae (1725). https://archive.org/details/bub_gb_XGkA07NtjhAC/

União Astronômica Internacional (IAU). Star Names. https://www.iau.org/public/themes/naming_stars/

Flagramos uma erupção solar! E seu tamanho é assustador!

Violência não é a resposta. Violência é a pergunta! E quando estamos falando de erupções solares a resposta é sim!

Erupções, flares e ejeções coronais de massa são violentos eventos produzidos por nosso Sol e que disparam um canhão de partículas eletricamente carregadas que se espalham pelo meio interplanetário e chegam a atingir a Terra, interagindo com nossa magnetosfera e produzindo efeitos como as belas auroras ou como inconvenientes interferências na ionosfera terrestre que afetam a propagação de sinais eletromagnéticos de comunicação e navegação.

Erupção registrado no limbo solar pelo satélite SDO da NASA.

Para falar com propriedade sobre as erupções e outros fenômenos solares, chamamos um reforço à altura da grandiosidade do evento: Dra. Claudia Medeiros, do canal Mais Que Raios, que complementa:

“Erupções solares costumam estar associadas também com as ejeções de massa coronal. Nessas espetaculares emissões, material solar relativamente mais frio que o entorno é liberado para o espaço com uma velocidade alta e pode se propagar em direção a Terra. Felizmente, apesar de imensa, essa estrutura se dissipa ao longo do caminho mas não sem antes deixar sua energia e campo magnético atuarem no espaço próximo e nesse caso, incluindo a Terra.”

Mas apesar destes eventos se tornarem mais frequentes à medida que o Sol se aproxima do máximo de atividade em um ciclo que se repete a cada 11 anos, flagrar ao telescópio uma grande erupção não é algo muito comum.

Mas eis que no dia 24 de dezembro ganhamos um presente inesperado de Natal! O presente chegou através de um telescópio especial para observação solar, equipado com um filtro que deixa passar apenas uma pequena fração de luz vermelha emitida por átomos de hidrogênio. Essa emissão, que chamamos de H-alfa, nos permite visualizar filamentos e protuberâncias ao observar o Sol. E na imagem acima, feita apressadamente pra não perder o registro do evento, flagramos uma gigantesca erupção no limbo solar!

A imagem foi feita com uma câmera DSLR (que não é o equipamento mais adequado para esse registro mas era o que permitiria uma captura mais rápida) e é uma combinação de poucos frames, com ajustes ligeiramente diferentes para capturar o máximo possível da estrutura. Infelizmente, quando montamos um arranjo com equipamento mais adequado, a estrutura já havia se desfeito, mas além do registro rápido com a DSLR, ficaram as lembranças de uma imagem muito mais rica visível diretamente na ocular do telescópio.

Mas queríamos ver em detalhes e ter uma ideia mais precisa das dimensões dessa colossal erupção! E para isso podemos sempre contar com o Solar Dynamics Observatory (SDO)! Um observatório solar orbital, equipado com câmeras que registram o Sol continuamente em imagens no ultravioleta. Sabendo o horário e data do evento, é possível pesquisar na base de dados pública do SDO e acessar imagens em diferentes comprimentos de onda para visualizar com excelente resolução erupções, flares e ejeções de massa!

O gigantismo da erupção salta aos olhos quando vemos o tamanho da Terra representado nas imagens para comparação. A imponente estrutura se ergue por mais de 250 mil km antes de se romper.

A dra. Claudia complementa:

“Apesar de ter acontecido no limbo, o que nos dá a possibilidade de, por contraste, medir suas dimensões que, conforme medido pelo Céu Profundo, atingiu mais de 250 mil Km, não foi possível observar a região ativa que deu origem a sua existência. Passados alguns dias pudemos observar a chance de ela estar associada a uma região ativa enumerada pela NOAA AR3534. Essa região está caminhando para o centro do disco solar e pode ser ainda protagonista de novas erupções solares, flares e até mesmo CME.

E tudo isso porque regiões ativas são coleções de manchas solares no Sol. Essas manchas solares possuem um campo magnético distorcido pela rotação do Sol e acabam por afetar o transporte de calor da zona convectiva, deixando ela mais fria que o entorno. Quando essas linhas de campo magnético se esticam, podem promover uma reconexão magnética liberando energia na forma de radiação, partículas e carregando propriedades do plasma solar para o meio interplanetário. Felizmente podemos observar esse fenômeno acontecendo pois eles emitem luz em diversos comprimentos de ondas, basta ter o equipamento certo ou aproveitar as ferramentas disponíveis na internet com os dados medidos das sondas espaciais.”

E a melhor parte é que essas imagens e dados estão disponíveis para pesquisadores profissionais e cientistas cidadãos e se você quer também ficar de olho na atividade do Sol, as imagens do Solar Dynamics Observatory podem ser encontradas no portal https://sdo.gsfc.nasa.gov/. Acesse, pesquise e se divirta e não esqueça de compartilhar conosco seus flagras dos violentos, mas sempre belos, eventos registrados nas imagens do SDO.

A Polêmica do Sol Esburacado!

O Sol observado no ultravioleta extremo, no canal de 193 Angstroms do instrumento AIA do telescópio SDO entre os dias 8 e 10 de dezembro de 2023. [NASA/SDO/AIA].

Dizer que um “buraco” surgiu no Sol, como vimos em muitos posts, ou mesmo chamar de “cratera” como vimos em uma matéria do jornal o Globo reproduzida no G1 pode gerar um pouco de confusão em quem lê (Ganhando o selo “Céu Profundo – Não é bem Assim!”).

Não é bem assim!

O Sol não tem uma superfície sólida como a Terra ou Lua. E portanto não se formam crateras no Sol. O que costumamos considerar como sua superfície é a camada que chamamos de ‘fotosfera’. A fotosfera é relativamente fria (menos de 6000 graus C) se a compararmos com seu núcleo, que atinge 15 milhões de graus.
Não tivemos nenhum buraco na fotosfera do Sol. O que vimos nas imagens foi uma falha nas camadas exteriores do Sol, a Coroa (ou Corona), que é uma região pouco densa mas muito quente (excedendo 1 milhão de graus) e que se eleva bem acima da fotosfera.

Não é bem assim: O Globo publicou uma boa matéria sobre o buraco coronal, mas usar o termo “cratera’ no título causa confusão (ninguém chama o buraco na camada de ozônio da Terra de cratera!). [imagem: reprodução/O Globo/NASA/SDO/AIA]

Nas últimas imagens capturadas pelo observatório espacial SDO, da NASA, a coroa aparece mais calma, mas é possível ver buracos coronais nas imagens em 193Å (esse é o comprimento de onda da luz registrada na imagem e fica na faixa do ultravioleta extremo) e muitas manchas na fotosfera nas imagens do instrumento HMI.

As câmeras do SDO registram imagens em preto e branco, mas para cada filtro utilizado as imagens recebem cores distintas.

Manchas solares. Regiões mais frias na fotosfera do Sol entre os dias 8 e 10 de dezembro de 2023. [NASA/SDO/HMI]

O SDO é um dos telescópios que monitora constantemente o Sol e nos ajuda a prever a chegada de partículas carregadas eletricamente ocasionalmente ejetadas pelo Sol em nossa direção. Essas partículas interagem com a atmosfera e com o campo magnético terrestre, podendo provocar interferência nas comunicações, no funcionamento de satélites e até em redes de transmissão de energia, sobretudo em altas latitudes, mais próximas dos polos magnéticos da Terra. Mas não são motivo para preocupação generalizada.

O Sol, visto no canal de 171Å do instrumento AIA do telescópio SDO. [NASA/SDO/AIA]
O Sol, visto no canal de 304Å do instrumento AIA do telescópio SDO.

imagens [NASA/SDO – HMI e AIA]

Telescópio Solar orbital da NASA observa cometa Nishimura

Cometa C/2023 P1 (Nishimura)
imageado pelo instrumento Heliospheric Imager
do observatório STEREO A no dia 23/09/2023.

O cometa Nishimura poderia ter dado um espetáculo nas últimas semanas, se não fosse sua posição desagradavelmente desfavorável para a observação no céu após sua passagem pelo periélio. Desde então sua elongação – ângulo de separção entre o cometa e o Sol – não excedeu os 14°. Isso significa que, mesmo o observador mais bem posicionado na superfície, vai ter o cometa a menos de 15° sobre o horizonte no momento do pôr do Sol e no crepúsculo astronômico (quando o Sol está entre 12° e 18° abaixo do horizonte) já não vai ser possível observar o Nishimura.

Mas não é fácil nos fazer desistir! Se não conseguimos observá-lo da superfície, vamos vasculhar os dados de um dos observatórios solares orbitais da NASA para encontrar o arredio cometa.

Cometa C/2023 P1 (Nishimura) – Animação com dados do observatório espacial STEREO A

A missão STEREO (Solar TErrestrial RElations Observatory) usa duas espaçonaves, uma à frente da Terra em sua órbita e outra atrás, para realizar observações estereoscópicas para o estudo do Sol e de suas Ejeções Coronais de Massa. Os dados de observações das STEREO, assim como os de todas as missões financiadas pela NASA, são acessíveis ao público a partir de bases de dados gratuitas e abertas.

Buscando as imagens recentes através do portal STEREO Science Center encontramos o cometa Nishimura no campo do instrumento Heliospheric Imager da STEREO A. Montando uma animação com as imagens recuperadas, podemos ver o cometa cruzando o campo, com direito a uma conjunção com o planeta Marte (é apenas um efeito de perspectiva, já que na verdade Marte está muito mais distante que o cometa).

Utilizamos dados até o dia 26/09, mas você pode seguir buscando dados mais atuais da STEREO para continuar de olho no tímido Nishimura enquanto não conseguimos imagens com nossos telescópios em Terra.

Observatório do Pico dos Dias: O colosso astronômico brasileiro.

O Maior Observatório Astronômico em solo brasileiro forma cientistas e provê dados observacionais há mais de quatro décadas e se prepara para receber novos telescópios.

Iluminadas pela luz suave e alaranjada do nascer do Sol, edifícios com cúpulas semi-esféricas abrigando telescópios estão enfileiradas sobre o topo da montanha. Ao fundo, o horizonte é preenchido por montanhas mais distantes da Serra Mantiqueira.
O conjunto de cúpulas desenha a silhueta do Observatório do Pico dos Dias (OPD) sobre a Serra Mantiqueira, em Brazópolis – MG. [imagem: Wandeclayt M./@ceuprofundo]

O Observatório do Pico dos Dias é o maior e mais importante observatório astronômico em solo brasileiro. Do alto da Serra da Mantiqueira, a 1864 m de altitude, no município de Brazópolis, no sul de Minas Gerais, o Observatório tem servido à astronomia brasileira desde 1980, quando o telescópio Perkin-Elmer de 1,60 m de diâmetro – o maior em solo brasileiro – viu sua primeira luz.

Visão panorâmica do Pico dos Dias, mostrando parte dos 360 ha de área preservada que cercam as instalações científicas e de apoio administrativo do Observatório [imagem: Wandeclayt M./@ceuprofundo].

Abrigado sob uma cúpula de 15m de diâmetro, o Perkin-Elmer se ergue como uma colossal sentinela no Pico dos Dias. Seu domo reluzente pode ser visto a dezenas de quilômetros de distância, desenhando junto com as demais cúpulas do OPD a silhueta da imponente montanha.

Nossa Galáxia, a Via-Láctea, parece mergulhar na cúpula do grande telescópio Perkin-Elmer de 1,60m de diâmetro do Observatório do Pico dos Dias. [imagem: Wandeclayt M./@ceuprofundo]

O OPD é também o lar de dois outros importantes instrumentos para a pesquisa e a formação de pessoal em astronomia: os telescópios de 0,60 m Zeiss e Boller-Chivens compõem a tríade de instrumentos principais do OPD.

Os atuais telescópios no topo do Pico dos Dias logo terão companhia, numa expansão que incluirá um telescópio de 0,80 m, já recebido na sede do Laboratório Nacional de Astrofísica em Itajubá (MG) e um telescópio de 0,50 m dedicado à observação solar, já em testes Instituto Nacional de Pesquisas Espaciais (INPE) em São José dos Campos (SP).

Camera SPARC4 instalada no telescópio Perkin-Elmer de 1,60m no OPD.

Mas não é apenas a instalação de novos telescópios que mantém o OPD em condições de seguir relevante na astrofísica observacional. Os veteranos telescópios no sítio recebem novos instrumentos e atualizações em seus sistemas desde sua instalação. O mais recente desses novos apetrechos é a câmera SPARC4, desenvolvida pelo INPE e pelo LNA para instalação no telescópio Perkin-Elmer. A SPARC4 incorpora 4 sensores que observam simultaneamente em quatro bandas distintas sem a necessidade de troca de filtros, uma característica valiosa e incomum em imageadores astronômicos.

Com exceção do Zeiss de 0,60m, os demais telescópios do OPD, inclusive os futuros telescópios, possuem sistemas de controle que podem ser operados remotamente, permitindo a observação sem o deslocamento dos pesquisadores até o observatório.

O Laboratório Nacional de Astrofísica.

Toda a estrutura observacional da astronomia brasileira é gerida pelo Laboratório Nacional de Astrofísica (LNA), uma unidade de pesquisa vinculada ao Ministério da Ciência, Tecnologia e Inovações. Isso inclui não apenas o OPD, mas também os grandes telescópios instalados no Chile e no Havaí nos quais o Brasil tem participação.

Grandes telescópios como o SOAR (4 m) e o Gemini Sul (8 m) no Chile e o Gemini Norte (8 m) no Havaí são disponibilizados à comunidade de pesquisa brasileira através de um processo público de submissão de propostas e seleção por mérito.

E você já conhecia o OPD? Gostaria de saber mais sobre esse grande recurso da astronomia brasileira?
Então você vai gostar de saber que o Projeto Céu Profundo, em parceria com a pós-graduação em Astronomia e Física Espacial da UNIVAP, está produzindo um documentário com imagens estonteantes de nosso amado observatório de montanha! Fique de olho em nossos publicações para saber onde assistir!

O cometa da estação! Adicione o cometa Nishimura ao Stellarium

Descoberto em agosto pelo astrônomo Hideo Nishimura, o cometa C/2023 P1 é o cometa mais brilhante a cruzar o céu até este ponto de 2023. Infelizmente isso não quer dizer que será fácil visualizá-lo a olho nu. Após o periélio em 14/09, o cometa permanece a menos de 15º do Sol pelas próximas semanas, muito baixo sobre o horizonte e ofuscado pelo crepúsculo. É uma observação desafiadora.

De qualquer forma, é preciso saber exatamente onde procurar o cometa dia após dia, já que com a proximidade do periélio sua posição varia rapidamente. A ferramenta mais prática e versátil para rastrear esse movimento é o planetário virtual Stellarium (disponível em https://stellarium.org/), um software livre e gratuito que permite a simulação do céu para qualquer posição da superfície terrestre (ou mesmo da superfície de outros planetas) na data e horário solicitados.

Neste guia, mostramos um passo a passo de como adicionar o cometa C/2023 P1 (Nishimura) à base de dados de objetos do Stellarium, facilitando sua vida na hora de buscar no céu esse discreto viajante interplanetário.

1. Configurações

Acesse a janela de configuração no menu lateral ou através da tecla [F2] do Stellarium.

2. Plugins/Complementos

Através da aba Plugins (1), acesse o Editor do Sistema Solar (2) e clique em “Configurar”(3).

3. Importar Elementos Orbitais

Na aba Solar System (Sistema Solar), clique em “Import orbital elements in MPC Format…”

4. Pesquisa online.

Na aba “Online search” pesquise pelo “C/2023 P1”

5. Adicionando objetos.

Selecione as opções indicadas pelas duas setas no alto. Em seguida clique no botão “Add objects” (seta inferior).

6. Pesquisando na base de dados atualizada.

Acesse a Janela de Busca pela barra lateral ou pela tecla (F3).
Pesquise o C/2023 P1 (Nishimura).
Pronto! Se tudo correu bem, o cometa C/2023 P1 (Nishimura) será exibido no seu céu! Ou pelo menos no céu simulado do Stellarium.

Fim da Caçada: Identificado objeto avistado reentrando na atmosfera sobre Minas Gerais e São Paulo.

O avistamento de um objeto flamejante, de brilho verde e se desfazendo no céu na noite da segunda-feira (19/06) disparou uma série de relatos em redes sociais e de chamados pedindo nossa confirmação da natureza do evento.

Com um grande número de relatos na região sudeste de Minas Gerais e em grande parte da região de Campinas e do Vale do Paraíba (SP) seguimos rapidamente para inspecionar as imagens das câmeras da rede de monitoramento de meteoros EXOSS no Observatório da UNIVAP.

Em busca de Imagens!

Mobilizamos o astrônomo Irapuan Oliveira, professor e coordenador do Observatório da Univap, e iniciamos a busca nos arquivos de imagem da noite, mas infelizmente nossas câmeras não estavam apontadas na direção do evento. A boa notícia é que pela trajetória estimada pela rede EXOSS a partir dos relatos e imagens em redes sociais lembramos de uma câmera que certamente teria capturado o evento em sua totalidade: a câmera de monitoramento de céu do Observatório do Pico dos Dias (OPD).

Mapa com a trajetória do objeto estimada pela rede EXOSS. [https://exoss.imo.net/]

O OPD é o maior observatório astronômico em solo brasileiro e é dotado de câmeras que registram integralmente o céu a partir de sua localização privilegiada, 1865m acima do nível do mar, nas montanhas de Brazópolis (MG). Com a ajuda do coordenador do OPD, o Astrônomo Saulo Gargaglioni, recuperamos a imagem capturada no observatório, que registrou integralmente a passagem do objeto por volta das 18:36. A imagem foi importante, porque a câmera possui uma posição conhecida e, além disso, podemos identificar as estrelas no céu, determinando com precisão a orientação da imagem (tente encontrar o Cruzeiro do Sul!).

Câmera All-Sky do Observatório do Pico dos Dias (OPD) [https://www.gov.br/lna/pt-br]

Um Objeto Voador (por pouco tempo) Não Identificado.

As imagens e a descrição do comportamento do objeto levavam a crer que se tratava de lixo espacial. Um objeto lento, se fragmentando na atmosfera e que com certeza se desintegrou antes de atingir o solo. Mas não encontramos nenhum objeto espacial com reentrada prevista no período que pudesse estar passando pela região naquele período.

Sem um suspeito na lista, relutantemente estávamos considerando a hipótese de que pudesse ser apenas um meteoro.

Uma Ajuda de Peso!

Mas entrou em cena uma equipe de peso: um time de especialistas em dinâmica orbital da empresa SAIPHER, em São José dos Campos, iniciou uma série de simulações via software que pudessem se ajustar à trajetória estimada pela rede EXOSS e o suspeito foi identificado!

Simulação de Trajetória do CZ-2C R/B (52323) [Ricardo freire/SAIPHER]

Apresentando o Culpado!

As simulações conduzidas por Ricardo Freire, da SAIPHER, apontaram que o segundo estágio de um foguete Longa Marcha 2C, lançado em 29 de Abril de 2022, no centro de lançamento de Jiuquan, na China, poderia ter reentrado um dia antes do previsto. O objeto também identificado como CZ-2C R/B (NORAD ID: 52323) tinha reentrada prevista para a madrugada do dia 20/06, mas as análises realizadas pela SAIPHER indicam a possibilidade de um decaimento mais acentuado que o previsto, resultando numa reentrada precoce sobre os céus de Minas Gerais e São Paulo na noite do dia 19/06.

A precisa análise conduzida pela SAIPHER permitiu estimar com exatidão as condições nas quais a reentrada ocorreu, ajustando-a aos dados obtidos a partir da rede EXOSS. Simulações como esta serão cada vez mais necessárias, num cenário em que a quantidade de objetos em órbita baixa cresce exponencialmente e com uma expectativa de grande aumento na frequência de eventos de reentrada.

Superpopulação Orbital.

A população de satélites em órbita baixa passa por uma fase de crescimento acelerado desde a última década, trazendo desafios para a operação segura destes objetos e acendendo o alerta para o consequente aumento do lixo espacial representado por componentes de foguetes e satélites que encerraram sua vida útil. O risco de colisão nessa faixa congestionada do espaço em volta da Terra é real e crescente e é apresentando como um dos grandes riscos para a próxima década no relatório de riscos globais do Fórum Econômico Mundial de 2022.

Número de Objetos em Órbita da Terra (1960 a 2020) – Relatório de Riscos Globais do Fórum Econômico Mundial 2022.

Empresas como a SAIPHER trabalham para prever reentradas e eventos de provável colisão, aumentando a consciência situacional de operadores de objetos espaciais. Um serviço que, em uma sociedade inteiramente dependente de serviços fornecidos via satélite, será vital nos próximos anos.

Imagem da Dark Energy Camera (DECAM), a mais poderosa câmera astronômica já construída, contaminada por rastros dos sateelites Starlink. [NOIRLAB]

Além do risco das colisões, um outro problema assombra a Astronomia: mega constelações de satélites como os Starlink, da empresa SpaceX, são uma fonte de poluição luminosa que contaminam as imagens científicas produzidas nos grandes observatórios, muitas vezes inviabilizando a coleta de dados importantes para a pesquisa.

São reflexos de um crescimente descontrolado e de uma indústria pouco regulada que aos poucos tem mudado, nem sempre para a melhor, a nossa visão do espaço.

MOBFOG – Mostra Brasileira de Foguetes – Você Não Vai Acreditar no Desempenho desses Pequenos Foguetes

palavras-chave: foguetes, mobfog, física, ensino, astronáutica, oba.

Garrafas PET, água, ar comprimido e paixão pelo espaço! São esses os ingredientes para construção e lançamento dos foguetes do nível 3 da MOBFOG – A Mostra Brasileira de Foguetes, uma competição estudantil irmã da célebre OBA – Olimpíada Brasileira de Astronomia.

Estudantes do 6° ao 9° ano do ensino fundamental de escolas públicas e privadas de todo o Brasil participam do nível 3 da MOBFOG, competem pelas medalhas que premiam os foguetes com maior alcance. Mas muito mais valiosos que a premiação são o espírito de colaboração e a oportunidade prática de aprendizado de conceitos de física, matemática e tecnologia aeroespacial proporcionados pela empolgante atividade.

Foguete nível 3 da MOBFOG 2023 de alunas do clube Meninas na Ciência, montado na plataforma de lançamento no campo do INPE em São José dos Campos para uma bateria de ensaios de avaliação. Após a análise dos voos, modificações foram realizadas para otimizar o desempenho dos foguetes!

Em São José dos Campos (SP) , um polo de pesquisa e desenvolvimento na área aeroespacial, os professores e estudantes de escolas públicas municipais ganharam o reforço de pesquisadores e técnicos do Instituto Nacional de Pesquisas Espaciais (INPE) e do Instituto de Aeronáutica e Espaço (IAE/DCTA) no planejamento e análise do voo dos foguetes.

Para visualizar a dinâmica de voo dos velozes foguetes, o Laboratório de Registro de Imagens do IAE registrou os lançamentos em vídeo de alta velocidade, a 1000 quadros por segundo, permitindo analisar em detalhes a fase inicial do voo e identificar falhas de construção que prejudicam o desempenho dos foguetes.

E o que podemos aprender com os foguetes da MOBFOG?

Captura de tela do software Tracker com o lançamento de um foguete nível 3 da MOBFOG. Os gráficos à direita são do deslocamento e da velocidade do foguete em função do tempo. [créditos LRIM/IAE]

Analisando os vídeos com o software de rastreio TRACKER (um programa aberto e gratuito!), podemos acompanhar o deslocamento do foguete quadro a quadro. Plotando em um gráfico o deslocamento em função do tempo temos uma representação visual de cada fase do voo, identificando a evolução da velocidade do foguete. O Tracker está disponível para download para os os sistemas operacionais Linux, Mac OS X e Windows ou pode ser executado online em sua versão em JavaScript.

Assim que o foguete é liberado e inicia seu movimento, vemos um aumento constante da velocidade. Em seguida, o foguete deixa a base e a velocidade passa a variar com uma taxa mais elevada, mas aproximadamente constante, até que toda a água em seu interior é liberada. A partir daí o foguete segue uma trajetória balística, sujeita apenas a ação da gravidade e da resistência do ar.

A geometria do foguete tem um papel importante em seu desempenho. A posição e o formato das empenas e a posição do centro de gravidade podem torná-lo mais ou menos instável e interferir no alcance máximo. A contribuição desses fatores fica evidente na análise de vídeo.

Mas a maior surpresa pode vir dos valores de velocidade máxima e aceleração que os pequenos foguetes de garrafas PET podem atingir. Acelerações de 100g e velocidades acima de 60m/s foram registradas! Isso reforça a necessidade da estrita observação das normas de segurança: uso de Equipamento de Proteção Individual (EPI), sinalização e isolamento da área de lançamento!

E se tudo for feito com segurança, os lançamentos são um excelente recurso prático para o aprendizado de conceitos físicos como velocidade, aceleração, empuxo, pressão, momento e para a interpretação de gráficos.

O que um All Star velho e Apollo 17 possuem em comum?

Julia Brazolim: Um tempo atrás um anúncio abalou uma esfera da internet pois uma marca super famosa lançou um tênis similar ao clássico All Star, mas um pouco mais… destruído e por um preço inaudível. As pessoas ficaram indignadas. Mas entrando ou não no âmago da arte desconstruída na moda, esses dias eu tive uma ideia que me custou apenas R$38. Vou dar um breve contexto.

Eu sempre gostei de comprar All Star, substituindo os pares ao longo dos anos. E certo dia, eu estava olhando pra um dos meus pares mais antigos e encontrei rasgos atrás. Como minha vontade em customizar coisas é muito alta, na hora tive a ideia de passar a fita Silver.

Julia usando o All Star após o uso da fita no tênis

Brevíssima história da Fita Silver

A Silver Tape ou a famosa fita prateada usada tão comumente em filmes de ação, seja pra prender alguém como refém ou pra prender dinamites, foi criada pela operária norte-americana Vesta Stoudt no início dos anos 40 durante a Segunda Guerra Mundial. Ela enfrentou um problemão durante o processo de embalagem das munições de armas para enviar pros soldados, já que não era prático abrir no meio da guerra e dificultava o carregamento no meio da batalha. Então, ela decidiu criar uma solução. Vesta enviou a ideia e o requerimento da produção da fita em uma carta pro então Presidente Franklin D. Roosevelt, que achou incrível e pediu pro Conselho de Produção de Guerra começar a produzir. Depois ela até ganhou um prêmio pela invenção e teve sua patente.

Foto de Vesta Stoudt. Créditos: The Chicago Sunday Tribune (24/10/1943) e Kilmerhouse

E não parou por aí. Exatamente por ser super eficiente já que a fita consegue colar em superfícies ásperas, lisas e irregulares, é feita com um tecido e também super prática pra rasgar até com a mão (ou uso dos dentes), Silver Tape passou a ser usada pela sociedade pra tampar buracos, dutos de aquecimento e tudo o que precisasse. Inclusive, numa missão espacial.

Uma fita. Uma missão. Apollo 17!

Wandeclayt: Um dos itens mais versáteis e úteis entre os aparatos levados a bordo das missões espaciais opera verdadeiros milagres em pequenos (ou não tão pequenos) reparos também aqui na Terra.

E afirmamos com tranquilidade que esse é o item mais poderoso no universo das gambiarras dos reparos emergenciais, capaz de sanar vazamentos, reparar estruturas, compor adaptações ou simplesmente remendar aquele confortável tênis velho ou aquele paralamas danificado do seu jipe lunar!

A multi talentosa fita prateada carrega em seu currículo, além do tênis All Star da Julia, a façanha de ter participado de uma adaptação que salvou a vida dos astronautas da Apollo 13 após uma explosão num tanque de oxigênio ainda a caminho da Lua e o mérito de ter garantido o cumprimento de todos os objetivos da Apollo 17, após um acidente que inviabilizaria a continuidade da exploração da bordo do jipe lunar.

Veja as fotos a seguir e olha como as fitas estão sendo usadas:

crédito: NASA (AS17-147-22526)
crédito: NASA (AS17-135-20542)
NASA (AS17-137-20979)

Julia: E é uma baita fita resistente! Como eu moro no litoral, meu receio era de que a areia tirasse a cola da fita e descolasse tudo. Mas não. Tá coladinha 🙂 Aqui um gif deu caminhando tranquilamente com o tênis:

E você? Qual foi o uso mais inusitado que você fez da fita Silver?

Esta publicação foi feita em collab com o projeto Missão Exoplaneta 🙂