Fim da Caçada: Identificado objeto avistado reentrando na atmosfera sobre Minas Gerais e São Paulo.

O avistamento de um objeto flamejante, de brilho verde e se desfazendo no céu na noite da segunda-feira (19/06) disparou uma série de relatos em redes sociais e de chamados pedindo nossa confirmação da natureza do evento.

Com um grande número de relatos na região sudeste de Minas Gerais e em grande parte da região de Campinas e do Vale do Paraíba (SP) seguimos rapidamente para inspecionar as imagens das câmeras da rede de monitoramento de meteoros EXOSS no Observatório da UNIVAP.

Em busca de Imagens!

Mobilizamos o astrônomo Irapuan Oliveira, professor e coordenador do Observatório da Univap, e iniciamos a busca nos arquivos de imagem da noite, mas infelizmente nossas câmeras não estavam apontadas na direção do evento. A boa notícia é que pela trajetória estimada pela rede EXOSS a partir dos relatos e imagens em redes sociais lembramos de uma câmera que certamente teria capturado o evento em sua totalidade: a câmera de monitoramento de céu do Observatório do Pico dos Dias (OPD).

Mapa com a trajetória do objeto estimada pela rede EXOSS. [https://exoss.imo.net/]

O OPD é o maior observatório astronômico em solo brasileiro e é dotado de câmeras que registram integralmente o céu a partir de sua localização privilegiada, 1865m acima do nível do mar, nas montanhas de Brazópolis (MG). Com a ajuda do coordenador do OPD, o Astrônomo Saulo Gargaglioni, recuperamos a imagem capturada no observatório, que registrou integralmente a passagem do objeto por volta das 18:36. A imagem foi importante, porque a câmera possui uma posição conhecida e, além disso, podemos identificar as estrelas no céu, determinando com precisão a orientação da imagem (tente encontrar o Cruzeiro do Sul!).

Câmera All-Sky do Observatório do Pico dos Dias (OPD) [https://www.gov.br/lna/pt-br]

Um Objeto Voador (por pouco tempo) Não Identificado.

As imagens e a descrição do comportamento do objeto levavam a crer que se tratava de lixo espacial. Um objeto lento, se fragmentando na atmosfera e que com certeza se desintegrou antes de atingir o solo. Mas não encontramos nenhum objeto espacial com reentrada prevista no período que pudesse estar passando pela região naquele período.

Sem um suspeito na lista, relutantemente estávamos considerando a hipótese de que pudesse ser apenas um meteoro.

Uma Ajuda de Peso!

Mas entrou em cena uma equipe de peso: um time de especialistas em dinâmica orbital da empresa SAIPHER, em São José dos Campos, iniciou uma série de simulações via software que pudessem se ajustar à trajetória estimada pela rede EXOSS e o suspeito foi identificado!

Simulação de Trajetória do CZ-2C R/B (52323) [Ricardo freire/SAIPHER]

Apresentando o Culpado!

As simulações conduzidas por Ricardo Freire, da SAIPHER, apontaram que o segundo estágio de um foguete Longa Marcha 2C, lançado em 29 de Abril de 2022, no centro de lançamento de Jiuquan, na China, poderia ter reentrado um dia antes do previsto. O objeto também identificado como CZ-2C R/B (NORAD ID: 52323) tinha reentrada prevista para a madrugada do dia 20/06, mas as análises realizadas pela SAIPHER indicam a possibilidade de um decaimento mais acentuado que o previsto, resultando numa reentrada precoce sobre os céus de Minas Gerais e São Paulo na noite do dia 19/06.

A precisa análise conduzida pela SAIPHER permitiu estimar com exatidão as condições nas quais a reentrada ocorreu, ajustando-a aos dados obtidos a partir da rede EXOSS. Simulações como esta serão cada vez mais necessárias, num cenário em que a quantidade de objetos em órbita baixa cresce exponencialmente e com uma expectativa de grande aumento na frequência de eventos de reentrada.

Superpopulação Orbital.

A população de satélites em órbita baixa passa por uma fase de crescimento acelerado desde a última década, trazendo desafios para a operação segura destes objetos e acendendo o alerta para o consequente aumento do lixo espacial representado por componentes de foguetes e satélites que encerraram sua vida útil. O risco de colisão nessa faixa congestionada do espaço em volta da Terra é real e crescente e é apresentando como um dos grandes riscos para a próxima década no relatório de riscos globais do Fórum Econômico Mundial de 2022.

Número de Objetos em Órbita da Terra (1960 a 2020) – Relatório de Riscos Globais do Fórum Econômico Mundial 2022.

Empresas como a SAIPHER trabalham para prever reentradas e eventos de provável colisão, aumentando a consciência situacional de operadores de objetos espaciais. Um serviço que, em uma sociedade inteiramente dependente de serviços fornecidos via satélite, será vital nos próximos anos.

Imagem da Dark Energy Camera (DECAM), a mais poderosa câmera astronômica já construída, contaminada por rastros dos sateelites Starlink. [NOIRLAB]

Além do risco das colisões, um outro problema assombra a Astronomia: mega constelações de satélites como os Starlink, da empresa SpaceX, são uma fonte de poluição luminosa que contaminam as imagens científicas produzidas nos grandes observatórios, muitas vezes inviabilizando a coleta de dados importantes para a pesquisa.

São reflexos de um crescimente descontrolado e de uma indústria pouco regulada que aos poucos tem mudado, nem sempre para a melhor, a nossa visão do espaço.

I Campanha LCO 2023 – Primeiros Passos.

Estamos entrando na primeira campanha de observação com telescópios robóticos da rede LCO em 2023, e se você está participando pela primeira vez, certamente não faltam dúvidas.
A boa notícia é que estamos aqui para saná-las e garantir que todo mundo possa aprender (e se divertir muito) fazendo imagens de objetos de céu profundo com instrumentos de alto desempenho localizados em alguns dos melhores sítios para observação astronômica do mundo!

Vou precisar instalar algum aplicativo?

Janela do aplicativo DS9, com dados de imagem da galáxia M101
Janela do DS9 com imagem da galáxia M101 capturada com telescópios do LCO.

Sim. Para visualizar e processar nossas imagens, usaremos o software SAO Image DS9, um programa gratuito e de código aberto usado extensivamente na astronomia profissional e que permite não apenas visualizar os dados, mas também realizar uma série de tarefas científicas em nossas imagens. Comece procurando a versão adequada para seu sistema operacional no site https://ds9.si.edu e instale, tomando o cuidado de não realizar a instalação em nenhum caminho que inclua pastas com espaços ou caracteres especiais ou acentuados em seu nome!

Devo instalar mais alguma coisa?

Janela do Stellarium com dados do aglomerado aberto M6.

É interessante ter o planetário virtual Stellarium funcionando também. Ele também é disponibilizado para todos os sistemas operacionais mais populares e também é gratuito e de código aberto. Baixe em https://stellarium.org

No Stellarium você vai poder visualizar os objetos visíveis no período da campanha e pode inclusive ter ideia das dimensões e brilho desses objetos! É uma boa ferramenta para o planejamento.

E agora, o que tenho que fazer?

Você receberá alguns emails da organização do projeto e da coordenação internacional do IASC com instruções para criar sua conta de acesso e depois terá 1h de tempo de observação alocado a essa conta.

Quando você tiver seus dados de login, pode acessar o portal do IASC/LCO

Portal IASC/LCO

Você encontrará vários links úteis e tutoriais no site, mas aqui no ceuprofundo.com e nas lives de treinamento nos canais do Céu Profundo e do Observatório Nacional no Youtube vamos detalhar todos os passos e tirar todas as dúvidas. Você também receberá o link para entrar num grupo do whatsapp em seu email cadastrado.

E por onde começo a entender o que são objetos de céu profundo?

O vídeo abaixo é uma introdução aos objetos de céu profundo. É um excelente primeiro passo:

Agora me empolguei! Que mais devo assistir?

Primeiro leia esse post mais detalhado aqui no site mesmo (Olha lá em cima no menu! temos uma aba LCO):
https://ceuprofundo.com/2022/08/16/lco-guia-do-participante/

E depois vem nessa playlist pensada exatamente para participantes do projeto LCO:


Leia também

Descobrindo as Leis de Kepler.

Versão beta do notebook Jupyter disponível no Google Colab.

https://colab.research.google.com/drive/1pltfcL5r1VXdzifKS95PwW4n2vGK6t45?usp=sharing

https://colab.research.google.com/drive/1K-Glo8x2r3jA3F0FJR70pbEELL1RyPT9?usp=sharing

MOBFOG – Mostra Brasileira de Foguetes – Você Não Vai Acreditar no Desempenho desses Pequenos Foguetes

palavras-chave: foguetes, mobfog, física, ensino, astronáutica, oba.

Garrafas PET, água, ar comprimido e paixão pelo espaço! São esses os ingredientes para construção e lançamento dos foguetes do nível 3 da MOBFOG – A Mostra Brasileira de Foguetes, uma competição estudantil irmã da célebre OBA – Olimpíada Brasileira de Astronomia.

Estudantes do 6° ao 9° ano do ensino fundamental de escolas públicas e privadas de todo o Brasil participam do nível 3 da MOBFOG, competem pelas medalhas que premiam os foguetes com maior alcance. Mas muito mais valiosos que a premiação são o espírito de colaboração e a oportunidade prática de aprendizado de conceitos de física, matemática e tecnologia aeroespacial proporcionados pela empolgante atividade.

Foguete nível 3 da MOBFOG 2023 de alunas do clube Meninas na Ciência, montado na plataforma de lançamento no campo do INPE em São José dos Campos para uma bateria de ensaios de avaliação. Após a análise dos voos, modificações foram realizadas para otimizar o desempenho dos foguetes!

Em São José dos Campos (SP) , um polo de pesquisa e desenvolvimento na área aeroespacial, os professores e estudantes de escolas públicas municipais ganharam o reforço de pesquisadores e técnicos do Instituto Nacional de Pesquisas Espaciais (INPE) e do Instituto de Aeronáutica e Espaço (IAE/DCTA) no planejamento e análise do voo dos foguetes.

Para visualizar a dinâmica de voo dos velozes foguetes, o Laboratório de Registro de Imagens do IAE registrou os lançamentos em vídeo de alta velocidade, a 1000 quadros por segundo, permitindo analisar em detalhes a fase inicial do voo e identificar falhas de construção que prejudicam o desempenho dos foguetes.

E o que podemos aprender com os foguetes da MOBFOG?

Captura de tela do software Tracker com o lançamento de um foguete nível 3 da MOBFOG. Os gráficos à direita são do deslocamento e da velocidade do foguete em função do tempo. [créditos LRIM/IAE]

Analisando os vídeos com o software de rastreio TRACKER (um programa aberto e gratuito!), podemos acompanhar o deslocamento do foguete quadro a quadro. Plotando em um gráfico o deslocamento em função do tempo temos uma representação visual de cada fase do voo, identificando a evolução da velocidade do foguete. O Tracker está disponível para download para os os sistemas operacionais Linux, Mac OS X e Windows ou pode ser executado online em sua versão em JavaScript.

Assim que o foguete é liberado e inicia seu movimento, vemos um aumento constante da velocidade. Em seguida, o foguete deixa a base e a velocidade passa a variar com uma taxa mais elevada, mas aproximadamente constante, até que toda a água em seu interior é liberada. A partir daí o foguete segue uma trajetória balística, sujeita apenas a ação da gravidade e da resistência do ar.

A geometria do foguete tem um papel importante em seu desempenho. A posição e o formato das empenas e a posição do centro de gravidade podem torná-lo mais ou menos instável e interferir no alcance máximo. A contribuição desses fatores fica evidente na análise de vídeo.

Mas a maior surpresa pode vir dos valores de velocidade máxima e aceleração que os pequenos foguetes de garrafas PET podem atingir. Acelerações de 100g e velocidades acima de 60m/s foram registradas! Isso reforça a necessidade da estrita observação das normas de segurança: uso de Equipamento de Proteção Individual (EPI), sinalização e isolamento da área de lançamento!

E se tudo for feito com segurança, os lançamentos são um excelente recurso prático para o aprendizado de conceitos físicos como velocidade, aceleração, empuxo, pressão, momento e para a interpretação de gráficos.

O que um All Star velho e Apollo 17 possuem em comum?

Julia Brazolim: Um tempo atrás um anúncio abalou uma esfera da internet pois uma marca super famosa lançou um tênis similar ao clássico All Star, mas um pouco mais… destruído e por um preço inaudível. As pessoas ficaram indignadas. Mas entrando ou não no âmago da arte desconstruída na moda, esses dias eu tive uma ideia que me custou apenas R$38. Vou dar um breve contexto.

Eu sempre gostei de comprar All Star, substituindo os pares ao longo dos anos. E certo dia, eu estava olhando pra um dos meus pares mais antigos e encontrei rasgos atrás. Como minha vontade em customizar coisas é muito alta, na hora tive a ideia de passar a fita Silver.

Julia usando o All Star após o uso da fita no tênis

Brevíssima história da Fita Silver

A Silver Tape ou a famosa fita prateada usada tão comumente em filmes de ação, seja pra prender alguém como refém ou pra prender dinamites, foi criada pela operária norte-americana Vesta Stoudt no início dos anos 40 durante a Segunda Guerra Mundial. Ela enfrentou um problemão durante o processo de embalagem das munições de armas para enviar pros soldados, já que não era prático abrir no meio da guerra e dificultava o carregamento no meio da batalha. Então, ela decidiu criar uma solução. Vesta enviou a ideia e o requerimento da produção da fita em uma carta pro então Presidente Franklin D. Roosevelt, que achou incrível e pediu pro Conselho de Produção de Guerra começar a produzir. Depois ela até ganhou um prêmio pela invenção e teve sua patente.

Foto de Vesta Stoudt. Créditos: The Chicago Sunday Tribune (24/10/1943) e Kilmerhouse

E não parou por aí. Exatamente por ser super eficiente já que a fita consegue colar em superfícies ásperas, lisas e irregulares, é feita com um tecido e também super prática pra rasgar até com a mão (ou uso dos dentes), Silver Tape passou a ser usada pela sociedade pra tampar buracos, dutos de aquecimento e tudo o que precisasse. Inclusive, numa missão espacial.

Uma fita. Uma missão. Apollo 17!

Wandeclayt: Um dos itens mais versáteis e úteis entre os aparatos levados a bordo das missões espaciais opera verdadeiros milagres em pequenos (ou não tão pequenos) reparos também aqui na Terra.

E afirmamos com tranquilidade que esse é o item mais poderoso no universo das gambiarras dos reparos emergenciais, capaz de sanar vazamentos, reparar estruturas, compor adaptações ou simplesmente remendar aquele confortável tênis velho ou aquele paralamas danificado do seu jipe lunar!

A multi talentosa fita prateada carrega em seu currículo, além do tênis All Star da Julia, a façanha de ter participado de uma adaptação que salvou a vida dos astronautas da Apollo 13 após uma explosão num tanque de oxigênio ainda a caminho da Lua e o mérito de ter garantido o cumprimento de todos os objetivos da Apollo 17, após um acidente que inviabilizaria a continuidade da exploração da bordo do jipe lunar.

Veja as fotos a seguir e olha como as fitas estão sendo usadas:

crédito: NASA (AS17-147-22526)
crédito: NASA (AS17-135-20542)
NASA (AS17-137-20979)

Julia: E é uma baita fita resistente! Como eu moro no litoral, meu receio era de que a areia tirasse a cola da fita e descolasse tudo. Mas não. Tá coladinha 🙂 Aqui um gif deu caminhando tranquilamente com o tênis:

E você? Qual foi o uso mais inusitado que você fez da fita Silver?

Esta publicação foi feita em collab com o projeto Missão Exoplaneta 🙂

Os Dois Anéis de Quaoar.

Quando falamos em anéis em objetos do Sistema Solar você imediatamente lembrará dos exuberantes anéis de Saturno, ou talvez dos mais discretos, mas ainda assim impressionantes, anéis em torno dos gigantes Júpiter, Urano e Netuno revelados em imagens capturadas no infravermelho.

Mas três pequenos corpos do Sistema Solar, através de campanhas observacionais com protagonismo de pesquisadores e instituições brasileiros, revelaram na última década inesperados sistemas anéis a sua volta. E a última dessas descobertas foi anunciada em primeira mão pelo astrônomo Felipe Braga-Ribas em uma das lives do ciclo Abril pra Astronomia, promovido pela Sociedade Astronômica do Recife (SAR) e pelo Projeto Céu Profundo: um tênue segundo anel foi detectado em torno do objeto transnetuniano (50000) Quaoar!

A jornada de descoberta de anéis em torno de pequenos corpos começa com Chariklo, um asteroide da classe dos Centauros, que teve seu anel anunciado em um trabalho de Felipe Braga-Ribas (UTFPR) e colaboradores em 2014 – seguido pelo anúncio em 2015 do anel do planeta anão Haumea, em trabalho liderado por J. L. Ortiz (Instituto de Astrofisica de Andalucía). Mais recentemente, vimos o anúncio de um primeiro anel no objeto trasnetuniano (50000) Quaoar em trabalho publicado em 2023 por Bruno Morgado (UFRJ) e colaboradores, com dados de observações realizadas entre 2018 e 2021.

Mas se a detecção de anéis em pequenos corpos do Sistema Solar já é um resultado surpreendente que evidencia o poder das técnicas observacionais e computacionais envolvidas no processo, a surpresa, o espanto e o orgulho pela ciência brasileira dobra com o anúncio da descoberta de um segundo anel em torno de Quaoar!

Em um artigo aceito para publicação no periódico Astronomy & Astrophysics Letters (já disponível no ArXiv), Chrystian Pereira (Observatório Nacional) e colaboradores anunciam que durante observações de uma ocultação estelar por Quaoar em agosto de 2022, além da confirmação do primeiro anel já observado, os dados apontaram a existência de um segundo anel envolvendo o pequeno e distante corpo.

Quem é Quaoar?

Orbitando o Sol além da órbita de Netuno, a uma distância média que é 43 vezes maior que o raio da órbita da Terra, Quaoar é um pequeno objeto de diâmetro estimado em torno de 1100 km. Seu primeiro anel, batizado de Q1R foi descoberto em observações realizadas entre 2018 e 2021.

Suas pequenas dimensões (aproximadamente um terço do diâmetro da Lua) e sua grande distância tornam impossível fazer imagens que possam resolver detalhes de sua superfície ou mesmo definir sua forma, por isso, são usados métodos indiretos – mas muito precisos – para determinar sua geometria.

Como são realizadas as observações?

Pra deixar bem claro o tamanho do desafio: visto da Terra, Quaoar tem o diâmetro aparente de uma moeda de um real a 154 km distância. Então observações diretas não são uma opção. Mas os pesquisadores envolvidos no trabalho são capazes de computar com grande precisão sua órbita e prever quando e onde é possível observar o trânsito desse objeto em frente a uma estrela, ocultando-a. Esse pequeno e breve eclipse é capaz de nos revelar detalhes da geometria do corpo eclipsante e de quebra fornecer informações sobre a presença ou não de uma atmosfera ou de sua composição.

Representação dos resultados para o formato de Quaoar (no centro) e para a detecção dos anéis Q1R (externo) e Q2R (interno). A órbita do anel Q1R combina dados das observações recentes e das realizadas entre 2018 e 2021, publicadas por Bruno Morgado e colaboradores. A elipse verde marca a posição esperada para o limite de Roche considerando partículas de densidade 0,4 g/cm3 . A existência de anéis além do limite de Roche é inesperada e a influência de efeitos de ressonância com a rotação do corpo central e com a órbita do Weywot (um pequeno satélite de Quaoar) é considerada. A seta indica o movimento da estrela ocultada em relação a Quaoar. [créditos: C.L. Pereira e colaboradores]

Mas assim como um eclipse solar total só é visível ao longo da estreita faixa sobre a superfície terrestre onde a sombra da Lua é diretamente projetada pelo Sol, a observação de ocultações estelares por planetas ou pequenos corpos do Sistema Solar também exige que os observadores estejam posicionados no lugar e na hora certos para essa desafiadora observação. Determinar estas posições e instantes com precisão é o primeiro, mas não o único, desafio para a realização destas observações.

A imagem abaixo mostra a localização de observatórios posicionados na faixa de visibilidade da ocultação. Os pontos laranja representam estações onde o céu estava nublado durante a ocultação, os pontos pretos representam as estações onde a ocultação foi observada com sucesso e o ponto vermelho marca a estação onde a observação não detectou a ocultação. A linha sólida representa o limite da sombra de Quaoar e as linhas pontilhadas delimitam o contorno dos aneis Q1R e Q2R.

Posição dos observatórios envolvidos na aquisição de dados da ocultação da estrela Gaia DR3 4098214367441486592 pelo objeto trasnetuniano Quaoar [créditos: C. L. Pereira e colaboradores]

Limites na sensibilidade dos instrumentos e meteorologia desfavorável são o grande obstáculo para uma observação que exige grande precisão e sensibilidade instrumental. Por sorte, a faixa de ocultação cobria também o arquipélago do Havaí, um dos melhores sítios para observação astronômica do hemisfério norte e lar dos observatórios Gemini Norte, de 8.1m de abertura e CFHT (Canada-France-Hawaii Telescope) de 3.6m. Estes telescópios de grande abertura e com instrumentos de grande sensibilidade foram capazes de resolver a presença do tênue segundo anel de Quaoar.

E quais os resultados?

Os telescópios apontados para a estrela Gaia DR3 4098214367441486592 esperavam ver o brilho da estrela ser atenuado pela passagem de Quaoar, da mesma forma que a passagem da Lua eclipsa o brilho do Sol em um eclipse solar.

Comparando a variação do brilho da estrela em observações realizadas em diferentes posições é possível traçar o contorno do objeto eclipsante. Mais duas breves quedas no fluxo luminoso eram esperadas antes e após a ocultação pelo corpo central, causadas pelo já conhecido anel Q1R, envolvendo Quaoar a uma distância média de 4100km. A surpresa veio de outra sutil queda de fluxo encontrada nos dados numa posição intermediária entre Quaoar e o anel Q1R.

Dados do observatório Gemini Norte no infravermelho próximo (filtro z’) mostram as variações no fluxo luminoso medido da estrela e de Quaoar. A queda profunda na parte central do gráfico corresponde ao intervalo em que Quaoar eclipsou a estrela e as pequenas reduções de fluxo observadas pouco antes e pouco depois da ocultação revelam a presença dos anéis. [créditos: C.L. Pereira e colaboradores]

Esta sutil, mas perceptível, queda no fluxo antes e depois da ocultação principal é suficiente para revelar a presença de um segundo anel, orbitando Quaoar a 2500 km de distância.

As curvas de luz obtidas com os telescópios Gemini Norte e CFHT são coerentes com a existência de um segundo anel em torno de Quaoar. [créditos: C. L. Pereira e colaboradores].
O conjunto de dados dos observatórios que realizaram com sucesso a observação da ocultação estelar por Quaoar revela também a diferença de desempenho dos grandes telescópios Gemini Norte e CFHT no monte Mauna Kea no Havaí.

A análise dos dados da observação permitem não apenas caracterizar Quaoar e seus anéis, mas abre também as portas para discutir a existência destas estruturas numa região além do limite de Roche clássico, onde se esperaria que essas partículas se aglutinassem formando um satélite. Efeitos de ressonância com o período de rotação de Quaoar e com seu pequeno satélite Weywot e a ocorrência de colisões mais elásticas entre as partículas dos anéis são fatores que podem contribuir para a existência e longevidade de anéis além do limite de Roche e o sucesso nos métodos usados em sua detecção podem significar que outros sistemas similares possam ser encontrados em futuras observações. E esperamos que mais uma vez a presença e o protagonismo brasileiro sigam fazendo a diferença.

Tesouros do Céu Austral.

No século XVII o astrônomo francês Charles Messier compilou um célebre catálogo de objetos astronômicos de aparência difusa, incluindo verdadeiras joias que até hoje atraem o fascinado olhar de astrônomos amadores ou os poderosos equipamentos de observatórios profissionais. Mas o catálogo de 110 objetos (alguns foram incorporados após a morte de Messier) nebulosos – que inclui a galáxia de Andrômeda (M31), a Grande Nebulosa de Órion (M42), a Nebulosa do Anel (M57) e outros objetos que povoam a calçada da fama da astronomia – deixa de fora alguns objetos belos e tão brilhantes que podem ser facilmente vistos através de pequenos telescópios, binóculos ou até a olho nu no céu do hemisfério sul.

Um céu ricamente estrelada, com uma faiza nebulosa cruzando a diagonal do canto inferior esquerdo até o canto superior direito. Há regiões mais densas, com concentrações de estrelas destacando-se e pequenas manchas coloridas variando do rosa ao azul distribuídas ao longo da diagonal esfumaçada.
A imagem acima mostra a riqueza do céu austral nas vizinhanças do Cruzeiro do Sul. Esta é uma exposição única de 30 segundos capturada com câmera DSLR numa montagem motorizada. Nenhuma técnica avançada de processamento de imagens astronômicas foi utilizada e a imagem reproduz aproximadamente a visão a olho nu sob um céu preservado da poluição luminosa (escala de bortle 8). [Imagem: Wandeclayt Melo/@ceuprofundo]

A explicação para a omissão desses objetos no catálogo Messier é simples: Vivemos numa Terra esférica e esses objetos não são observáveis a partir da Europa.
A exuberante nebulosa de Eta Carinae, o imponente aglomerado globular Omega Centauri e até galáxias inteiras como as Nuvens de Magalhães são um tesouro oculto para os habitantes das latitudes mais altas no hemisfério norte, mas se revelam em todo o seu esplendor para os olhos e telescópios do sul.

Mas para encontrar esses tesouros um primeiro passo é fundamental : Afaste-se da poluição luminosa das áreas urbanas. Busque áreas rurais ou suburbanas e evite qualquer iluminação excessiva apontada para o céu ou visível diretamente de seu ponto de observação. Quanto mais escuro o ambiente, melhor será a sua experiência e mais destacados os objetos astronômicos aparecerão, em contraste com o fundo do céu.

Agora, afastados da poluição luminosa, podemos iniciar a caça ao tesouro. Comece identificando a constelação de Crux, o Cruzeiro do Sul.
Visível de todo o Brasil e facilmente reconhecível mesmo em céus urbanos, o Cruzeiro do Sul é um excelente ponto de partida para iniciar o reconhecimento do hemisfério sul celeste. Após identificarmos o Cruzeiro e suas cinco estrelas mais brilhantes – as quatro estrelas nas pontas dos braços da cruz, mais a “intrometida” – encontramos a leste duas estrelas muito brilhantes: alfa e beta da constelação do Centauro, ou alfa e beta centauri.

Carta da região circunvizinha ao Cruzeiro do Sul, gerada com o software Cartes du Ciel (Sky Charts) versão 4.2.1. O software é aberto e gratuito e está disponível para download em https://www.ap-i.net/skychart/. Compare com a fotografia mais acima.

Utilizando uma boa carta celeste ou um aplicativo de celular (não vamos indicar nenhum aplicativo em particular, porque quase todos cumprem muito bem o seu papel) continue explorando o céu ao redor do Cruzeiro. Identifique mais a oeste as constelações de Carina e Vela. Ao sul, a Mosca. Veja também como a constelação do Centauro envolve a Cruz a leste, norte e oeste.

Se você estiver num local realmente escuro, olhando para essas regiões do céu, perceberá algumas manchas difusas no céu. Um longa faixa clara – a Via Láctea – se estende de leste a oeste. Pequenas regiões nebulosas pontuam essa faixa e são melhor percebidas se não as observarmos diretamente. Tente olhar para um ponto próximo e usar o canto do olho para perceber melhor essas manchinhas nebulosas. Essa técnica de visão periférica é algo que usamos também ao observar objetos mais tênues através da ocular do telescópio.

Você perceberá dezenas desses pontos. São nebulosas, galáxias e aglomerados estelares. Perceptíveis a olho nu como pequenas manchas, mas que revelam sua verdadeira natureza e todo seu esplendor quando observamos através de binóculos e telescópios.

Esse é um excelente primeiro passo na exploração dos tesouros do céu profundo ocultos no céu austral. Visite e revisite estes objetos e venha aqui compartilhar conosco!

O Céu de Janeiro/2023

O ano de 2023 se inicia com todos os planetas acima do horizonte no início da noite.

Mercúrio, a caminho da conjunção inferior (quando o planeta encontra-se entre a Terra e o Sol) no dia 07/01, só poderá ser visto pelos observadores mais afortunados que tenham o horizonte oeste desobstruído e livre de nuvens nos primeiros dias de janeiro. Na última semana de janeiro, o planeta mais interno de nosso Sistema Solar volta a ser visível antes do amanhecer, atingindo a máxima elongação a oeste no dia 30/01.

Você não vai notar, mas no dia 4 de janeiro a Terra atinge o periélio, a ponto de sua órbita mais próximo do Sol, a uma distância de pouco menos de 147,1 milhões de km. Isso é imperceptível para nós, já que a variação entro o periélio e o afélio (o ponto da órbita mais distante do Sol) é muito pequena. A órbita terrestre é de baixa excentricidade, quase circular. É bom lembrar que as estações do ano são causadas pela inclinação do eixo de rotação da Terra e não tem nenhuma relação com essa variação de distância (basta lembrar que enquanto é verão em um hemisfério é inverno no outro e vice-versa).

Vênus seguirá visível ao entardecer por todo o primeiro semestre, atingindo a elongação máxima a leste somente em junho.

Uma bela, mas desafiadora, conjunção ocorrerá no fim da tarde do dia 22/01: Vênus e Saturno se encontrarão com menos de meio grau de separação, o suficiente para serem vistos juntos na ocular do telescópio. O desafio está na posição dos planetas, muito baixos sobre o horizonte oeste ao pôr do Sol.

Com menos de meio grau separando Vênus e Saturno no dia 22/01, será possível observar os dois astros simultaneamente na ocular do telescópio.

A conjunção entre Vênus e Saturno no dia 22/01 acontece com o céu ainda claro e com os astros já bem baixos sobre o horizonte oeste. A observação será desafiadora. Bônus pra quem também conseguir observar a delgada Lua, com menos de 2% de sua face visível iluminada. [Simulação: Stellarium/@ceuprofundo]

Para os observadores dos Objetos do Céu Profundo, as Nuvens de Magalhães, o Complexo de Carina com suas regiões de emissão e aglomerados estelares surgem em todo seu esplendor já no início da noite. Galáxias como M83 e NGC 5128 (Centaurus A) também aguardam para ser observadas e imageadas. E não se esqueçam dos colossais aglomerados globulares 47 Tucanae e Omega Centauri.

Cometas

Cometa C/2022 E3 (ZTF) em imagem de julho/22 utilizando telescópio robótico de o,4m da rede LCO [Wandeclayt m./@ceuprofundo]

Você provavelmente vai ver imagens do cometa C/2022 E3 (ZTF) circulando. Aqui no Brasil as melhores condições de observação em janeiro são para as regiões Norte e parte do Nordeste e Centro-Oeste. Para latitudes mais ao sul, sua posição é desfavorável e somente em fevereiro teremos boas condições para observá-lo de todo o Brasil. Com direito a conjunção com Marte e Plêiades!

Posição do cometa C/2022 E3 (ZTF) ao se aproximr do periélio na constelação da Coroa Boreal na madrugada de 12/01 (Simulação para São José dos Campos-SP, Stellarium/@ceuprofundo).
Posição do cometa C/2022 E3 (ZTF) ao se aproximr do periélio na constelação da Coroa Boreal na madrugada de 12/01 (Simulação para Recife-PE, Stellarium/@ceuprofundo).
DataHoraEvento
01/01Lua a 1º de Urano
02/01
03/01Lua em Conjunção com Marte (Máxima aproximação <0.5º, não visível no Brasil)
04/0113:17
Terra no Periélio (147,099 milhões de km).
Aniversário de nascimento de Isaac Newton.
05/01
06/0120:07Lua Cheia
07/01Mercúrio em conjunção inferior (Não observável).
08/01
09/01
10/01
11/01
12/01Cometa C/2022 E3 (ZTF) no periélio (1.11 UA).
13/01
14/0123:10Lua Minguante
15/01
16/01
17/01
18/01
19/01
20/01
21/0117:53Lua Nova
22/01Conjunção entre Vênus e Saturno ao entardecer (separação <0,5º).
23/01
24/01
25/01
26/01
27/01
28/0123:32Lua Crescente
29/01
30/01Mercúrio em máxima elongação a oeste (Visível ao amanhecer)
31/01

Operação Astrolábio – Novos Rumos para Alcântara.

O Veículo HANBIT-TLV, montado na plataforma de lançamento CLS (Coalesced Launch System), durante a preparação para o lançamento na Operação Astrolábio. [imagem: INNOSPACE/@ceuprofundo]

Desde sua criação, o Centro de Lançamento de Alcântara (CLA), tem servido com excelência às demandas do Programa Nacional de Atividades Espaciais (PNAE), fornecendo infraestrutura e apoio ao lançamento dos veículos suborbitais brasileiros. Esta infraestrutura é fundamental para o programa brasileiro de experimentos em microgravidade, através do lançamento de veículos suborbitais nacionais. Brevemente o centro dará também suporte a operações nacionais de satelitização com o Veículo Lançador de Microssatélites VLM – em desenvolvimento pelo Instituto de Aeronáutica e Espaço (IAE) com participação da indústria nacional.

Área de Preparação e Lançamento do Centro de Lançamento de Alcântara – CLA

Posicionado numa posição privilegiada, com baixa densidade demográfica, baixo fluxo de tráfego aéreo, sem ocorrência de terremotos ou furacões e localizado apenas 2º ao sul da linha do equador – uma grande vantagem para inserção de satélites em órbitas de baixa inclinação – o CLA tem potencial para atrair também operadores internacionais de veículos espaciais. E este potencial começa a se materializar com a assinatura do contrato com a startup coreana INNOSPACE, para o primeiro lançamento de um veículo espacial privado nas instalações do CLA.

Este novo capítulo na história do CLA – a caminho da implementação do que será o Centro Espacial de Alcântara (CEA) – consolidará Alcântara como um importante espaçoporto internacional. As operações privadas no Centro, aumentarão a cadência de lançamentos, elevando o nível de prontidão e capacitação das equipes e meios utilizados nas atividades de apoio, preparação e lançamento de veículos espaciais. Um ganho valioso para o Centro, mas que também se reverte em fomento à indústria aeroespacial brasileira e ao desenvolvimento regional em Alcântara através da injeção de recursos na economia local e na geração de empregos diretos e indiretos.

O HANBIT-TLV posicionado verticalmente pela primeira vez na plataforma de lançamento. [imagem: INNOSPACE/@ceuprofundo]

Mas a inovação não vem somente na abertura do CLA a empresas privadas. A empresa INNOSPACE (que traz a inovação estampada em seu nome e em seu slogan: Innovation for Space. Space for Innovation.”) realiza na operação Astrolábio o primeiro teste de seu motor de propulsão híbrida HyPER15 – um motor com propelente sólido a base de parafina e oxigênio líquido como oxidante, capaz de produzir 150 quilonewtons de empuxo. A tecnologia inovadora permite construir motores simples, baratos e seguros com controle de empuxo, fundamentais para a inserção precisa de satélites em órbita. A qualificação do motor HyPER15 num voo suborbital do foguete HANBIT-TLV (Test Launch Vehicle) será a luz verde para o desenvolvimentos da família de lançadores de pequenos satélites (SSLV) HANBIT em suas versões Nano, Micro e Mini, atendendo a demanda atual do mercado espacial, por lançadores para satélites menores e mais leves e mais baratos.

Integração do veículo HANBIT-TLV no Prédio de Preparação de Propulsores do Centro de Lançamento de Alcântara. [imagem: INNOSPACE/@ceuprofundo]

Sobre a operação de lançamento, o Dr. Soojong Kim, CEO da INNOSPACE, revela seu entusiasmo:

Estamos muito empolgados para fazer nosso voo espacial inaugural aqui no Centro de Lançamento de Alcântara. Esse é um momento histórico para todos nós. É a primeira vez que uma empresa coreana realiza um lançamento fora de seu território e também somos a primeira empresa estrangeira lançando em território brasileiro. O HANBIT TLV é um lançador suborbital transportando uma carga útil brasileira e empregando um motor híbrido de 150 quilonewtons de empuxo – o maior a ser usado em um SSLV – e será lançado este mês. Estamos encantados pela beleza de Alcântara e pela hospitalidade brasileira, especialmente por parte da Força Aérea Brasileira e pelo governo do Brasil. Esperamos desenvolver essa relação e construir uma sólida parceria para nossas futuras operações.” Soojong Kim, CEO da INNOSPACE.

Aqui no Céu Profundo também estamos entusiasmados com a operação e seguiremos acompanhando a campanha de lançamento e manteremos informações atualizadas em nosso Twitter e no Instagram. Aproveite para nos seguir e não perder nenhum detalhe deste momento histórico.

Integração e testes do SISNAV (Sistema Inercial de Navegação), carga útil nacional embarcada no HANBIT-TLV e desenvolvida pelo Instituto de Aeronáutica e Espaço (IAE) – órgão do Departamento de Ciência e Tecnologia Aeroespacial (DCTA). [imagem: INNOSPACE/@ceuprofundo]
Teste de elevação do veículo HANBIT-TLV na Plataforma de Lançamento. Ao fundo, a TMI (Torre Móvel de Integração). [imagem: INNOSPACE/@ceuprofundo]
Transporte do HANBIT-TLV para a plataforma de lançamento CLS. [imagem: INNOSPACE/@ceuprofundo]
Equipe da INNOSPACE após a primeira instalação do HANBIT-TLV no lançador. [imagem: INNOSPACE/@ceuprofundo]

Cadê a Fosfina?

Imagem de Vênus, com espectro sobreposto, mostrando linhas de absorção do ozônio (O3) na atmosfera da terrestre e sem indicação da presença de fosfina (PH3). – [Imagem produzida por Wandeclayt M. com dados da espaçonave Messenger, durante seu segundo sobrevoo a Vênus em junho de 2007. A imagem é uma composição colorida RGB utilizando os canais de 433.2nm, 579.9nm e 748.7n do instrumento MDIS, capturados quando a nave passava a 66 mil km do planeta].

Em 2021, o anúncio da detecção de traços do gás fosfina (PH3) na atmosfera do planeta Vênus, apontada por dados do rádio observatório ALMA (Atacama Large Millimeter/submillimeter Array), causou euforia na comunidade científica.

Antenas do radio observatório ALMA (Atacama Large Millimeter/submillimeter Array) no norte do Chile. Com dados desde observatório, um grupo publicou em 2021 a descoberta de uma abundância acima da esperada de moléculas de fosfina na atmosfera de Vênus. [imagem: ESO/B. Tafreshi]

A abundância de fosfina reportada inicialmente (20 partes por bilhão) era anormalmente alta e sua origem não poderia ser facilmente explicada por processos conhecidos. A euforia vem do fato da fosfina ser um biomarcador – uma molécula que pode estar associada ao metabolismo de seres vivos – que na Terra é formada por matéria orgânica em decomposição, e seu excesso, se confirmado, poderia significar a presença de vida na atmosfera de Vênus. Uma hipótese ousada que precisaria de dados muitos robustos para suportá-la.

O trabalho de Martin Cordiner, do Goddard Space Flight Center, e colaboradores, aceito para publicação no periódico Geophysical Research Letters.

Mas os dados robustos não vieram. Após a divulgação do resultado, uma recalibração dos dados do ALMA levou a uma estimativa muito mais modesta: de 1 a 7 partes de fosfina por bilhão. Algo muito mais condizente com processos naturais, como atividade vulcânica e outros processos que não envolvem metabolismo de seres vivos.

Cuidadosas observações realizadas em seguida, pelo recém aposentado telescópio infravermelho SOFIA – um telescópio de 2.7m de diâmetro operando embarcado em um Boeing 747 modificado da NASA – deram origem a um trabalho publicado por Martin Cordiner do Centro Espacial Goddard, e colaboradores, estabelecendo um limite superior para a abundância de fosfina venusiana: a substância não foi detectada, e caso ela esteja presente na atmosfera do planeta, não deve exceder as 0.8 partes por bilhão na faixa entre 75 e 110 km de altitude.

SOFIA (Stratospheric Observatory for Infrared Astronomy) – Um telescópio infravermelho de 2,7m de diâmetro (2,5m de diâmetro útil), aerotransportado em um Boeing 747 adaptado. Uma cooperação entre as agências espaciais dos EUA (NASA) e Alemanha (DLR).

Durante sua vida útil, o observatório SOFIA operou em uma condição privilegiada: voando entre 38000 e 44000 pés de altitude, seu telescópio se colocava acima de 99% da atmosfera terrestre e de seus efeitos na absorção da reveladora radiação infravermelha. Sua mobilidade também era uma grande vantagem, permitindo observar eventos transientes como eclipses e trânsitos de objetos do Sistema Solar, mesmo quando esses só fossem visíveis sobre o oceano ou outras regiões onde não há observatórios.

Os dados do SOFIA vão na direção do que muitos esperavam e reforça a ideia de que o resultado publicado em 2021 foi fruto de dados mal calibrados. Este é um processo comum na ciência: um trabalho pode chegar em conclusões incorretas por falhas em seus métodos ou em seu conjunto de dados, mas análises e novas observações posteriores podem mostrar essas inconsistências e corrigir esses resultados.